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Automatic Detection of Cerebral Microbleeds From
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Abstract—Cerebral microbleeds (CMBs) are small haem-
orrhages nearby blood vessels. They have been recognized as
important diagnostic biomarkers for many cerebrovascular
diseases and cognitive dysfunctions. In current clinical routine,
CMBs are manually labelled by radiologists but this procedure
is laborious, time-consuming, and error prone. In this paper, we
propose a novel automatic method to detect CMBs from magnetic
resonance (MR) images by exploiting the 3D convolutional neural
network (CNN). Compared with previous methods that employed
either low-level hand-crafted descriptors or 2D CNNs, our method
can take full advantage of spatial contextual information in MR
volumes to extract more representative high-level features for
CMBs, and hence achieve a much better detection accuracy. To
further improve the detection performance while reducing the
computational cost, we propose a cascaded framework under
3D CNNs for the task of CMB detection. We first exploit a 3D
fully convolutional network (FCN) strategy to retrieve the can-
didates with high probabilities of being CMBs, and then apply a
well-trained 3D CNN discrimination model to distinguish CMBs
from hard mimics. Compared with traditional sliding window
strategy, the proposed 3D FCN strategy can remove massive
redundant computations and dramatically speed up the detection
process. We constructed a large dataset with 320 volumetric
MR scans and performed extensive experiments to validate the
proposed method, which achieved a high sensitivity of 93.16%
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with an average number of 2.74 false positives per subject, outper-
forming previous methods using low-level descriptors or 2D CNNs
by a significant margin. The proposed method, in principle, can
be adapted to other biomarker detection tasks from volumetric
medical data.
Index Terms—3D convolutional neural networks, biomarker

detection, cerebral microbleeds, deep learning, suscepti-
bility-weighted imaging.

I. INTRODUCTION

C EREBRAL microbleeds (CMBs) refer to small foci of
chronic blood products in normal (or near normal) brain

tissues. They are histopathologically considered to be com-
posed of hemosiderin deposits that leak through pathological
blood vessels [1]. CMBs are prevalent in patients with cere-
brovascular and cognitive diseases (such as stroke and de-
mentia), as well as present in healthy aging individuals. The
existence of CMBs and their distribution patterns have been
recognized as important diagnostic biomarkers of cerebrovas-
cular diseases. For example, the lobar distribution of CMBs
suggests probable cerebral amyloid angiopathy [2] and the
deep hemispheric or infratentorial CMBs imply probable hy-
pertensive vasculopathy [3]. More importantly, the presence
of CMBs could dramatically increase the risk of symptomatic
intracerebral hemorrhage and recurrent ischemic stroke [4].
Apart from indicating these vascular diseases, CMBs could
also structurally damage their nearby brain tissues, and fur-
ther cause neurologic dysfunction, cognitive impairment and
dementia [5]. In this regard, reliable detection of the presence
and number of CMBs is crucial for cerebral diagnosis and may
guide physicians in determining which drugs to use for neces-
sary treatment, such as stroke prevention [6].
Modern advances in magnetic resonance (MR) imaging tech-

nologies, e.g., susceptibility-weighted imaging (SWI) [7], make
paramagnetic blood products sensitive to screening, and hence
facilitate the recognition of CMBs [8]. As shown in Fig. 1, the
CMB is radiologically visualized as rounded hypointensities
of small size in the SWI scan [9] (see the yellow rectangle in
Fig. 1 left). In general, the clinical routine to annotate CMB is
based on visual inspection and manual localization [10], which
suffers from limited reproducibility among different observers
and could be laborious and time-consuming, especially within
the context of large numbers of subjects. Alternatively, auto-
matic detection methods can help relieve the workload on ra-
diologists as well as improve the efficiency and reliability of
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Fig. 1. Illustration of a CMB and a CMB mimic denoted with yellow and red
rectangles, respectively. In each of the big rectangle, from top to down, the rows
demonstrate adjacent slices in axial, sagittal and coronal planes. Best viewed in
color.

the radiologic assessment. However, the automatic detection
of CMBs faces several challenges. First, there is a large vari-
ation regarding the size of CMBs with a diameter ranging from
2 mm to 10 mm [1]. Second, the widespread distributed lo-
cations of CMBs make complete and accurate detection even
harder [2], [3]. Third, there exist a lot of hard CMBmimics, e.g.,
flow voids, calcification and cavernous malformations, (see the
red rectangle in Fig. 1 left) which would resemble the appear-
ance of CMBs in SWI scans and heavily impede the detection
process [9].
Previous automatic CMB detection methods mainly em-

ployed hand-crafted features based on shape, size and intensity
information. For example, Fazlollahi et al. [11] utilized the
radon transform to describe the shape information of CMBs,
while Kuijf et al. [12] applied the radial symmetry transform
(RST) to identify spherical regions as CMBs. To improve
the capability of discrimination, Bian et al. [13] proposed to
measure the geometric features after performing a 2D fast
RST. Ghafaryasl et al. [14] further designed more compre-
hensive features that integrated the geometry, intensity, scale
and local image structures. To improve the detection speed,
some researchers proposed to first quickly remove the apparent
non-CMB background regions and retrieve a small number of
promising candidates for further classification based on these
features [15], [16]. However, the design of these hand-crafted
features heavily depends on the domain knowledge of CMBs.
In addition, these low-level features are usually insufficient to
capture the complicated characteristics of CMBs.
Recently, some investigations have been dedicated to

learning features in a data driven way in order to more accu-
rately detect CMBs [17], [18]. Among them, convolutional
neural network (CNN) is one of the most promising solutions
to meet the challenges of CMB detection by virtue of its high
capability in extracting powerful high-level features. Actually,
CNNs have achieved a great success with hierarchical feature
representations in challenging natural image recognition tasks
including object detection [19] semantic segmentation [20],
image classification [21] and video action recognition [22].
Lately, CNNs have also presented outstanding effectiveness on
2D medical image computing problems such as standard plane
localization from ultrasound images [23] and mitosis detection
from histology images [24].

Our objective in this work is to detect biomarkers which are
sparsely distributed in a 3D medical volume. However, how
to effectively employ CNNs on 3D volumetric data still re-
mains an open problem in medical image computing commu-
nity. One straightforward way is to employ conventional 2D
CNNs based on a single slice and process the slices sequentially
[25]–[27]. Apparently, this solution disregards the contextual
information along the third dimension, so its performancewould
be heavily degraded. Alternatively, some researches aggregate
adjacent slices [18] or orthogonal planes (i.e., axial, coronal and
sagittal) [28], [29] to enhance complementary spatial informa-
tion. Nevertheless, this solution is still unable to make full use
of the volumetric spatial information, because the input slices
are independently treated and the convolution kernels are not
shared along the third dimension. Note that the spatial infor-
mation of all three dimensions is quite important for our CMB
detection task. As shown in Fig. 1 right, the mimic can resemble
the CMB in the view of one or two dimensions, but when taking
the characteristics of all three dimensions into consideration, it
is much easier to distinguish the CMB from the mimic. To the
end, a 3D version of CNN, which utilizes 3D convolution ker-
nels, is a more reliable solution to take full advantage of spatial
contextual information in volumetric data for more accurate de-
tection of CMBs.
To our best knowledge, the effectiveness of the 3D CNN on

volumetric medical data has not been extensively explored. The
main obstacles lie in the expensive computational cost, memory
requirement and time consumption [30], [31]. Consider, if we
detect lesions from a volume (as is the case in
this work) using the traditional sliding window strategy [24],
[32], [33], over 39 millions of 3D patches are sampled in a
voxel-wise manner. Even with a larger sampling stride such as
4, we would still obtain over half a million of 3D patches. This
brings about a large amount of computational workload, which
is impractical in clinical practice. Fortunately, by taking a closer
look at the sliding window strategy, we can find that convolu-
tional operations are redundantly conducted due to overlapped
sampling. In this case, if we can elegantly remove the massive
redundant computations, the detection process can be dramati-
cally speeded up.
In order to accurately and efficiently detect CMBs from volu-

metric brain SWI data, we propose a robust and efficient method
by leveraging 3D CNNs. Specifically, our method consists of
two stages that are designed in a cascaded manner. The first
stage is the screening stage, in which a small number of can-
didates are retrieved using a novel 3D fully convolutional net-
work (3D FCN) model. The screening strategy with the 3D
FCN model can achieve significant acceleration compared with
the conventional sliding window strategy under the same set-
ting of the sampling stride. The second stage is the discrimi-
nation stage, where the candidates obtained from the screening
stage are carefully distinguished with a 3D CNN discrimina-
tion model. This stage removes a large number of false positive
candidates and yields the final detection results. To validate the
effectiveness of the proposed method, we built a large dataset
of cerebral SWI images including 126 stroke subjects and 194
normal aging subjects. Extensive experiments conducted on the
large dataset corroborate that our method can achieve better re-
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sults than the state-of-the-art methods in terms of sensitivity,
precision and false positive rate. The main contributions of this
work are summarized as follows:
1) We, for the first time, exploit the 3D CNN for automatic

detection of CMBs from volumetric brain SWI images.
The 3D CNN sufficiently encodes the spatial contextual
information and hierarchically extracts high-level features
in a data driven way. It demonstrates better performance
than previous methods based on low-level 3D features or
2D CNNs. To our best knowledge, we are one of the pio-
neers to employ 3D CNN for automatic detection of key
biomarkers from volumetric medical data.

2) To efficiently leverage 3D CNN, we propose a novel 3D
FCN strategy to successfully avoid redundant computa-
tions in the traditional sliding window strategy. The 3D
FCN is capable of inputting a whole volumetric data and
directly outputting a 3D prediction score volume within
a single forward propagation. In this way, the detection
speed is dramatically accelerated.

3) We propose a two-stage cascaded framework to efficiently
and accurately detect CMBs. The screening stage with the
3D FCN rapidly retrieves potential candidates, and the dis-
crimination stage with the 3D CNN focuses on these can-
didates to further accurately single out the true CMBs from
challenging mimics. In addition, this proposed framework
is general and can be easily adapted to other biomarker de-
tection tasks.

The remainder of this paper is organized as follows. We de-
tail our method in Section II and report the experimental results
in Section III. Section IV further analyzes some key issues of
the proposed method and discusses future directions. The con-
clusions are drawn in Section V.

II. METHODOLOGY

Fig. 2 shows an overview of the proposed cascaded frame-
work, which is composed of two stages: screening stage and
discrimination stage. In the screening stage, the 3D FCN model
takes a whole volumetric data as input and directly outputs a 3D
score volume. Each value on the 3D score volume represents
the probability of CMB at a corresponding voxel of the input
volume. Subsequently, in the discrimination stage, we further
remove false positive candidates by applying a 3D CNN dis-
crimination model to distinguish true CMBs from challenging
mimics with high-level feature representations.

A. 3D Convolutional Neural Network

Typically, a CNN alternatively stacks convolutional (C) and
sub-sampling, e.g., max-pooling (M), layers. In a C layer, small
feature extractors (kernels) sweep over the topology and trans-
form the input into feature maps. In aM layer, activations within
a neighborhood are abstracted to acquire invariance to local
translations. After several C and M layers, feature maps are flat-
tened into a feature vector, followed by fully-connected (FC)
layers. Finally, a softmax classification layer yields the predic-
tion probability. Readers can refer to [34] for more details about
typical CNN constructions. Although CNNs have achieved re-
markable successes in 2D medical image analysis [23], [24],

Fig. 2. An overview of the proposed cascaded framework for CMB detection.

they have been seldom extended to 3D volumetric image pro-
cessing tasks.
1) 3D Convolutional Layers: In a typical C layer, a feature

map is produced by convolving the input with convolution ker-
nels, adding a bias term, and finally applying a non-linear acti-
vation function. By denoting the i-th feature map of the l-th layer
as and the k-th feature map of the previous layer as , a C
layer is formulated as:

(1)

where and are the filter and bias term connecting the
feature maps of adjacent layers, the denotes the convolution
operation and the is the element-wise non-linear activation
function.
In 2D natural image processing, the input of CNN usually

consists of three color channels (i.e., RGB). Inspired by this,
the most straightforward way to adapt 2D CNN to support volu-
metric data processing is replacing the color channels with slices
of the volume. As shown in Fig. 3(a), given a volumetric image
of size , when we employ this scheme to generate
a feature map, we first need to split the input volume along the
third dimension into isolated slices, and then feed these iso-
lated slices into the network. Correspondingly, 2D kernels are
formed, with each single slice swept over by a unique kernel (see
the red line). However, this scheme cannot sufficiently leverage
the spatial information, since the 2D kernels are different
from each other. In other words, due to the absence of kernel
sharing across the third dimension, the encoded volumetric spa-
tial information is inevitably deficient.
Learning feature representations from all three dimensions is

vitally important for biomarker detection tasks from volumetric
medical data, e.g., CMB detection from SWI images. In this re-
gard, we propose to employ the 3D convolution kernel, in the
pursuance of encoding richer spatial information of the volu-
metric data. In this case, the feature maps are 3D blocks in-
stead of 2D patches (we call them feature volumes hereafter). As
shown in Fig. 3(b), given the same volumetric image of size

, when we employ a 3D convolution kernel to generate
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Fig. 3. Comparison of using 2D and 3D convolution kernels given volumetric
image with size of in terms of network input, kernel behavior
and generated feature map. Red lines represent the moving direction of kernels,
i.e., sweeping over the 2D and 3D topologies, respectively. (a) With the 2D
convolution (kernel size of ), the volume is first split into isolated
slices along the third direction and these slices are input to the network. Each
generated feature map is a 2D patch. (b) With the 3D convolution (kernel size of

), the entire volume is input to the network. Each generated feature
map is a 3D volume. (Note that kernel sizes , and need not to be equal.
Best viewed in color.).

a 3D feature volume, the input to the network is the entire volu-
metric data. Consequently, a 3D kernel is formed and it sweeps
over the whole 3D topology (see the red line). By leveraging the
kernel sharing across all three dimensions, the network can take
full advantage of the volumetric contextual information.
Generally, the following equation formulates the exploited

3D convolution operation in an element-wise manner:

(2)

where is the 3D kernel in the l-th layer which convolves
over the 3D feature volume , is the element-
wise weight in the 3D convolution kernel. Following (1) and
(2), the 3D feature volume is obtained by different 3D con-
volution kernels:

(3)

2) 3D CNNHierarchical Architecture: After figuring out the
3D convolutional layers, we can hierarchically construct a deep
3D CNNmodel by stacking the C,M and FC layers, as shown in
Fig. 4. Specifically, in the C layer, multiple 3D feature volumes
are produced. In the M layer, the max-pooling operation is also
performed in a 3D fashion, i.e., the feature volumes are sub-
sampled based on a cubic neighborhood. In the following FC
layer, 3D feature volumes are flattened into a feature vector as its
input. The ultimate output layer employs the softmax activation
to yield the prediction probabilities.

Fig. 4. The hierarchical architecture of the 3D CNN model.

In our 3D CNN implementation, the rectifier linear unit
(ReLU) [35] is utilized for the non-linear activation func-
tion in the C and FC layers. The 3D convolution kernels are
randomly initialized from the Gaussian distribution and train-
able parameters in the network are tuned using the standard
back-propagation with stochastic gradient descent by mini-
mizing the cross entropy loss. Meanwhile, dropout strategy [36]
is utilized to reduce the co-adaption of intermediate features
and improve the generalization capability.

B. 3D Fully Convolutional Network

One of the main concerns about exploiting CNN in medical
imaging domain lies in the time performance, as many med-
ical applications require prompt responses for further diagnosis
and treatment. The situation is more rigorous when processing
volumetric medical data. Directly applying 3D CNNs to detect
lesions using the traditional sliding window strategy is usually
impracticable, especially when the input images are acquired
with high resolutions, because thousands or even millions of
3D block samples need to be analyzed. In most biomarker de-
tection applications, the targets are usually sparsely distributed
throughout the volume, such as the CMBs in the 3D brain MR
data. To this end, one promising solution is to first obtain the
candidates with a high sensitivity and then perform fine-grained
discrimination only on these candidates, so that the computa-
tional cost can be greatly reduced. Previous work proposed to
retrieve CMB candidates (also called regions-of-interest (ROI)
in some papers) in a MR volume by employing local statistical
information, including size, intensity, shape and other geometric
features [14], [15], [18]. However, due to the large variations
of CMBs in different patients, only relying on these statistic
values, it is difficult to precisely describe the characteristics of
CMBs and detach them from the background regions. The re-
sults either neglect true CMBs or include a large number of false
positives, which can complicate the following discrimination
procedure.
We propose to use 3D CNN to robustly screen candidates by

leveraging high-level spatial representations of CMBs learned
from a large number of 3D training samples. However, we still
face the challenge of time performance when employing 3D
CNN to retrieve candidates with the traditional sliding window
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strategy. To this end, inspired by the 2D fully convolutional net-
works [20], [37], we propose to extend the strategy into a 3D
format for efficient retrieval of CMB candidates from MR vol-
umetric data. The proposed 3D FCN can take an arbitrary-sized
volume as input and produce a 3D score volume within a single
forward propagation, and hence greatly speed up the candidate
retrieval procedure without damaging the sensitivity.
1) Fully Convolutional Transformation: In the 3D CNN ar-

chitecture, both the M and C layers can process arbitrary-sized
input, where convolution ormax-pooling kernels sweep over the
input and generate the corresponding-sized output. However,
the traditional FC layers flatten the feature volumes into vectors
thus dismissing the spatial relationships. These FC layers then
utilize vector-matrix multiplications to generate the output, as
shown in the following:

(4)

where and are the feature vectors in the
(l-1)-th and the l-th FC layers, respectively, is the
weight matrix and denotes the bias term.
In traditional CNN, once trained, the weight is with a

fixed shape, and hence the FC layer has fixed input/output sizes.
As a result, a network with traditional FC layers requires that the
initial inputs have a fixed size. For example, when the network
is trained based on 3D samples of size , errors will
arise if we input a test sample of size , due to the
shape mismatch in the first dimension.
In this regard, we equivalently re-write the FC layers into the

following convolutional format:

(5)

where each neuron in the FC layer is regarded as a
feature volume, is the 3D kernel and the
is the 3D convolution operation described in (2). In this way,
the vector-matrix multiplications are formulated as convolution
operations with kernels. With the FC layers converted
into convolutional layers, the network could therefore support
arbitrary-sized input.
2) 3D Score Volume Generation: During the training phase,

a traditional 3D CNN model is learned. Once training is done,
to acquire the 3D FCN model, the FC layers in the traditional
3D CNN are transformed into the convolutional fashion. More
specifically, the multiplication matrix is reshaped
into a 5D tensor (the dimensions are or-
dered for the ease of implementation), and hence the weight ma-
trix is converted into a series of convolution kernels. During
the testing phase, the 3D FCN model directly inputs a volume
(with size for our dataset) and outputs a 3D
score volume (with reduced resolution compared with the orig-
inal input size). The value at each location of score volume in-
dicates the probability of CMB.
Some technical issues need to be handled when developing

the 3D FCNmodel. Specifically, when converting the traditional
FC layers into the convolutional fashion by casting the 2D mul-
tiplication matrix into the 5D tensor ,

TABLE I
THE ARCHITECTURE OF 3D FCN SCREENING MODEL

we should precisely maintain the spatial correlations. In addi-
tion, during the whole volume testing phase, we need to ensure
the dimension consistency in the logistic regression layer, where
the feature volumes are first flattened into vectors, then applied
to the softmax function and finally reshaped back to form the
3D score volume.
Compared with the sliding window strategy which repeatedly

crops overlapping samples, the 3D FCN strategy produces a 3D
score volume within a single forward propagation. As a result,
the 3D FCN successfully eliminates a large number of redun-
dant convolutional computations, which dramatically speeds
up the prediction process. For example, when employing the
number of convolution operations to roughly estimate the com-
putational cost of a testing volume with size ,
the proposed 3D FCN strategy (with the architecture shown in
Table I) is roughly 800 times faster than the voxel-wise sliding
window strategy and 100 times faster than the sliding window
strategy with a sampling stride of 2, which is the same stride as
our 3D FCN architecture (i.e., generating the same resolution
score volumes).
3) Score Volume Index Mapping: Due to successive layers

of convolution and max-sampling operations, the size of the
generated 3D score volume is reduced compared with the orig-
inal input. Actually, the 3D score volume is a coarse version of
the voxel-wise predictions which are produced by the sliding
window strategy. Meanwhile, the locations on this coarse score
volume can be traced back to the coordinates on the original
input space.
Since all three dimensions follow the same index mapping

mechanism, we demonstrate the mapping process with one di-
mension. In our formulation, indices are numbered from zero.
Generally, for each C or M layer (supposing non-padding con-
volution and non-overlap pooling) in the model, the index map-
ping procedure with convolution or max-pooling operation can
be calculated by:

(6)

where and denote the coordinates before and after the
convolution or max-pooling operation; and represent the
stride and kernel size, respectively; the represents the floor
function.
When mapping the location in the coarse score volume

back through the architecture towards the location in the orig-
inal input volume, we successively deduce the index mapping
procedures along all intermediate convolution and max-pooling
layers until the initial input layer. For example, based on the
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Fig. 5. The mapping from the 3D score volume onto the original input space.

network architecture shown in Table I, for each position index
in the coarse score volume, we can obtain its corresponding

index in the original input as follows:

(7)

where, according to the network architecture, , ,
, , , , , and we can calculate
and for the dimension.

As shown in Fig. 5, with this mechanism, each location in
the 3D score volume can be mapped back to the centroid of the
corresponding receptive field of the neuron. Equivalently, if the
cubic patch centered on the traced position is input to the tradi-
tional 3D CNN, the prediction probability is indeed the value at
the location on the coarse score volume. Consequently, the pre-
diction scores are sparsely mapped back onto the input volume,
and regions with high probabilities are retrieved as potential
candidates.

C. Two-Stage Cascaded Framework
In order to detect CMBs from MR images, we employ 3D

CNN based models to tap potentials of spatial information in
all three dimensions and represent them as high-level features.
We construct a 3D FCN model and a 3D CNN model tailored
for two different stages and integrate them into an efficient
and robust detection framework. In this cascaded framework
for CMB detection, each stage serves its own mission. The
screening stage with the 3D FCN aims to accurately reject
the background regions and rapidly retrieve a small number
of potential candidates. The discrimination stage with the 3D
CNN focuses only on the screened set of candidates to further
single out the true CMBs from challenging mimics.
1) Screening Stage: In this stage, the 3D FCN model with

the architecture shown in Table I is exploited. Note that the FC
layers are converted into the convolutional fashion, thus we
present kernel sizes for them. We analyzed the bounding box
sizes of CMB regions, which were measured in the number
of voxels along the three axes. The sagittal and frontal axes
take similar sizes and the longitudinal axis has a relatively low
resolution due to the parameter settings of data acquisition,
which are regular scanning settings in clinical practice. To

Fig. 6. Illustration of the workflow of the screening stage. The training phase
is conducted in three sub-steps: (1) train an initial traditional 3D CNN with
positive samples and randomly selected negative samples; (2) apply the initial
model on training set and obtain false positive samples to enlarge the training
database; (3) fine-tune the initial traditional 3D CNN model with the enlarged
database to strengthen its discrimination capability. Once training is done, the
traditional FC layers are converted into the convolutional fashion (as shown in
the brown box). During the testing phase, the 3D FCN takes a whole volume as
input, extracts representative feature volumes and finally produces a 3D score
volume to retrieve candidates.

ensure the accuracy while limiting the computational workload,
when training the traditional 3D CNN, we set the input size as

, because 99.39% of the CMB lesions are bounded
by this sized box.
The workflow of the screening stage is illustrated in Fig. 6,

including both training and testing phases. During the training
phase, the positive samples are extracted fromCMB regions and
augmented by translation, rotation and mirroring to expand the
training database. In practice, the network is trained with three
sub-steps. We start from training an initial 3D CNN with ran-
domly selected non-CMB regions throughout the brain as neg-
ative samples. Next, we add false positive samples acquired by
applying the initial model on the training set. Finally, the initial
model is fine-tuned with the enlarged training database which
consists of 23.63% positives, 47.52% randomly selected nega-
tives and 28.85% supplemental false positives. In this way, the
discrimination capability of the network is further enhanced.
Once training is done, the fine-tuned traditional 3DCNN is con-
verted into the 3D FCN model by transforming the FC layers
into the convolutional fashion. During the testing phase, the 3D
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TABLE II
THE ARCHITECTURE OF 3D CNN DISCRIMINATION MODEL

FCN model takes the whole volume as input and generates the
corresponding coarse 3D score volume.
Considering that the produced score volume could be noisy,

we utilize the local non-max suppression in a 3D fashion as
the post-processing. Locations in the 3D score volume are then
sparsely traced back to coordinates in the original input space,
according to the index mapping process presented in (7). Fi-
nally, regions with high prediction probabilities are selected as
the potential candidates.
2) Discrimination Stage: In this stage, 3D small blocks are

cropped centered on the screened candidate positions. The size
of these blocks was carefully validated. We first found that a
number of false positives were produced in the first stage with
a training block size of . By enlarging the block
size, richer contextual information within larger surrounding
neighborhood can provide additional clues to better distinguish
CMBs from their mimics. However, due to the small size of
CMB, the cropped block size can not be too large. Otherwise,
redundant contextual information would be introduced and may
degrade the performance. In this regard, we set the input size as

in our experiments, in order to discriminate the
challenging candidates with a suitable receptive field. The pa-
rameter setting of block size is detailed in Section III-D.
The extracted 3D candidate regions are classified by a newly

constructed 3D CNN model. We notice that the randomly se-
lected non-CMB samples are not strongly representative, espe-
cially when we aim to distinguish true CMBs from their mimics.
To generate representative samples and improve the discrimina-
tion capability of the 3D CNN model, the obtained false pos-
itives (which take very similar appearance as CMBs) on the
training set in the screening stage are taken as negative samples
when training the 3D CNN in the second stage. The network ar-
chitecture of the discrimination model is shown in Table II. Note
that the FC layers remain as the traditional format without trans-
formed into convolutional fashion, because this stage focuses on
classification rather than overall screening and the matrix mul-
tiplications are more computationally efficient compared with
convolution operations.

III. EXPERIMENTS

A. Dataset and Preprocessing

To validate the performance of the proposed method, we built
a large dataset of SWI images for CMB detection, referred as
SWI-CMB. The SWI-CMB includes 320 SWI images acquired
from a 3.0T Philips Medical System with 3D spoiled gradient-

TABLE III
DETAILS OF DATASETS

echo sequence using venous blood oxygen level dependent se-
ries with the following parameters: repetition time 17 ms, echo
time 24 ms, volume size , in-plane resolution

, slice thickness 2 mm, slice spacing 1 mm and
a field of view. The subjects came from two
separated groups: 126 subjects with stroke (mean age stan-
dard deviation: ) and 194 subjects of normal aging
(mean age standard deviation: ).
The dataset was labeled by an experienced rater (Lei Zhao)

and was verified by a neurologist (Dr. Zhaolu Wang) following
the guidance of Microbleed Anatomical Rating Scale [10]. We
employed the Pearson correlation coefficient (PCC) to assess
the interobserver agreement between the two raters [38]. Due to
the large dataset and expensive manual annotation efforts, we
tested the interobserver agreement with a subset of 20 subjects
(including 10 cases with stroke and 10 cases of normal aging).
The PCC turned out to be 0.91 , which indicates
a high degree of agreement between the two raters. Overall, a
total of 1149 CMBs were annotated from the whole dataset and
regarded as the ground truth in our experiments. To our best
knowledge, this is the largest benchmark dataset available for
CMB detection.
In our experiments, we randomly divided the whole dataset

into three sections for training, validation and testing, respec-
tively. The details of these three sets are shown in Table III. In
the preprocessing step, we normalized the volume intensities to
the range of with:

(8)

where and denote the original and normalized intensity
value, respectively. The is the maximum intensity value
after trimming the top 1% gray scale values and the is the
minimum intensity value of the volume. Since the MR image
has sparse outliers with high intensity values, by trimming the
extremes at the top end of the intensity range, more room could
be made for the remaining intensities to be adjusted. This pre-
processing has been widely performed in other related studies
[11], [18].

B. Evaluation Metrics

We employed three commonly used metrics to quantitatively
evaluate the performance of the proposed CMB detection
method including sensitivity (S), precision (P) and the average
number of false positives per subject . They are defined
as follows:

(9)
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(a) Visualization of 3D kernels in the 1st C layer

(b) Visualization of 3D kernels in the 2nd C layer

Fig. 7. Visualization of typical learned filters in the screening 3D FCN model:
(a) visualization of the C1 layer kernels, where each column represents a 3D
kernel of size , which is visualized as three 5 5 maps; (b) visualization
of the C2 layer kernels, where each column represents a 3D kernel of size

, which is visualized as three 3 3 maps.

where TP, FP and FN denote the total number of true-positive,
false-positive and false-negative detection results, respectively.
The N represents the number of subjects in the testing dataset.

C. CMB Candidates Localization With 3D FCN

To provide a comprehensible insight into the learned kernels
of the 3D FCN in the screening stage, typical 3D convolution
kernels of the first two convolutional layers are visualized in
Fig. 7. The sizes of kernels can be referred to the architecture in
Table I. The Fig. 7(a) visualizes the C1 layer kernels (with size

), where each column represents a 3D kernel which is
demonstrated as three 5 5 maps. Interestingly, the learned ker-
nels attend to the spherical shapes of CMBs as well as the inten-
sity difference between the CMBs and surrounding background.
More importantly, the observed slight changes of the three maps
within each column validate that the 3D kernels have effectively
captured spatial information across the third dimension of the
volumetric data, demonstrating 3D CNN can capture more con-
textual information than 2D CNN for more accurate detection
in 3D medical data. The Fig. 7(b) visualizes the C2 layer ker-
nels (with size ), where each column represents a 3D
kernel which is visualized as three 3 3 maps. These kernels are
difficult for straightforward interpretation since they try to con-
struct some high-level concepts from the output features of the
bottom layer. Nevertheless, we can observe that these kernels
attain evidently organized patterns.
During the testing phase, the 3D FCN model inputs a whole

volume and correspondingly produces a 3D score volume. Each
location on the score volume is assigned a probability of be-
longing to a CMB region. Locations on the score volume are
then sparsely mapped back to coordinates of the original input
space according to (7). After post-processing, the score volume
is thresholded and the regions of high probabilities are retrieved
as candidates. Here, we set the threshold , which yields
the best performance on the validation dataset.
We compared the screening performance of our proposed

method with two state-of-the-art approaches which utilize
low-level statistical features [15], [18]. We implemented these
comparison approaches and employed them on our testing
dataset. The results are listed in Table IV. The values of sen-
sitivity mean the percentage of successfully retrieved CMBs
while the values of describe the number of remaining
false positives per subject. The fewer false positives produced,

TABLE IV
COMPARISON OF DIFFERENT SCREENING METHODS

the more powerful discrimination capability a screening method
has. The proposed 3D FCN model achieves the highest sen-
sitivity with fewest average number of false positives, which
highlights the efficacy of the proposed method. Note that our
method outperforms the other two methods by a large margin,
thanks to the 3D FCN model.
We have also recorded the average time for screening each

subject and the results are listed in Table IV. From the clinical
perspective, the time performance of our method is satisfactory;
processing a whole volume with a size of
takes around 1 minute in our experiments. The method of [15]
is slower than ours because it calculates local thresholds using a
voxel-wise sliding window strategy. In contrast, the method of
[18] merely exploits global thresholding on intensity and size,
hence it has a much faster screening speed.
For the candidate screening stage, the retrieval accuracy is

vitally important, because we cannot re-find the CMBs that are
missed by the screening stage in the following discrimination
stage. Although [18] is faster, we achieved around 8% increase
in sensitivity and reduced the number of from 935.8 to
282.8, when compared with this method. These results provide
a much more reliable basis for further fine discrimination. By
employing the 3D FCN, our method achieves a good balance
between retrieval accuracy and speed.
Typical candidate screening results by the proposed 3D

FCN are shown in Figs. 8 and 9. In our experiments, the local
non-max suppression was performed in a 3D fashion. For the
sake of clear illustration, we projected the 3D score volume
together with its 3D suppression result onto the visualized slice
planes, because after the 3D suppression, local-maximums
may fall onto other adjacent planes instead of the visualized
slice. To comprehensively present the results, we projected the
volumetric results along two directions, i.e., the longitudinal
and frontal axes. Examples of the obtained axial and sagittal
plane projection results are shown in Figs. 8 and 9, respec-
tively. It is observed that high values on the score volume
mostly correspond to CMB lesions. In addition, most of the
backgrounds have been successfully suppressed as zeros. After
thresholding, only a small number of candidates are obtained
(see those white rectangles), which dramatically reduces the
computational workload in the following stage.

D. True CMB Discrimination With 3D CNN

Employing the CMB samples with augmentations and the
false positives generated from the training set in the screening
stage (overall 0.7 million training samples with around 13%
positive samples), we train the 3D CNN discrimination model
to remove false positive candidates and accurately identify true
CMBs.
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Fig. 8. Typical results of the 3D FCN screening model with score volume projection onto the axial plane. (a) Raw data with true CMBs (yellow rectangles). (b)
2D projection of the score volume generated with FCN. (c) 2D projection of the post-processed score volume. (d) Retrieved candidates (white rectangles). Best
viewed in color.

Fig. 9. Typical results of the 3D FCN screening model with score volume projection onto the sagittal plane. (a) Raw data with true CMBs (yellow rectangles). (b)
2D projection of the score volume generated with FCN. (c) 2D projection of the post-processed score volume. (d) Retrieved candidates (white rectangles). Best
viewed in color.

Fig. 10. FROC curves of 3D CNN with different block size configurations.

The 3D CNN demands a suitable receptive field (i.e., input
size) to achieve fine discrimination. Specifically, we compared
three different block size configurations, i.e., (which
is the same size as the training block in the screening stage),

and . We tested larger sizes than the
input block size of the screening model because we wanted to
validate whether a larger input blockwithmore contextual infor-
mation can enhance the discrimination capability of the model.
The results under these settings are shown in Table V. In addi-
tion, Fig. 10 presents the Free Response Operating Character-
istic (FROC) curves of different sample size configurations. In

TABLE V
DETECTION RESULTS UNDER DIFFERENT BLOCK SIZE CONFIGURATIONS

the case of block size , the detection sensitivity
reached 91.45% with 4.20 false positives. The detection perfor-
mance was improved to the sensitivity of 92.31%with 2.90 false
positives under block size , demonstrating that prop-
erly increasing contextual information can enhance the discrim-
ination capability of 3DCNN.When block size was
employed, the detection sensitivity decreased to 91.45% with
average 5.74 false positives per subject. This may be because
that too much redundant contextual information would disturb
the actual CMB signals, and hence degrade the detection per-
formance. Actually, regardless of the employed block sizes, our
method achieved much better results than other methods using
2D CNNs or hand-crafted features. Derived from these experi-
ments, by setting the block size as , we can achieve
an optimal detection performance.
We independently trained three models using the network ar-

chitecture shown in Table II. The differences of the three models
lie in the random weights initialization states and the number
of training epochs. The neural network with a large number of
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TABLE VI
EVALUATION OF DETECTION RESULTS

parameters is usually with a low bias and a large variance. By
averaging multiple models with different weight initializations
and early stopping conditions, we can reduce the model vari-
ance, and thus further boost the discrimination capability [39].
As shown in the last two rows in Table VI, the performance
by averaging the three models was slightly better than that of a
single 3D CNN model.
We compared the performance of our method with three

typical approaches. These methods were implemented on
our dataset for direct comparison. The first one employed
hand-crafted features based on shape and intensity [15]. The
second one constructed a random forest classifier based on
low-level features, which is commonly used for 3D object
detection tasks in medical applications [40]. The third one
utilized a 2D CNN and concatenated 2D features as 3D repre-
sentations [18].
For the method of [15], we employed its feature extraction

procedure on our dataset and utilized a support vector machine
(SVM) [41] classifier for prediction. Readers can refer to [15]
for details.
For the random forest based method, we extracted inten-

sity-based and geometry-based features. For intensity-based
features, referring to [42], we employed the following four
groups of features: 1) the local intensity; 2) the mean intensity of
the local cuboid; 3) the difference of local intensity and random
offset cuboid mean; 4) the difference of local and random
offset cuboid means. In addition, to provide an overview of the
surrounding tissues, we added the raw 3D intensities within the
cubic block in a compact manner, i.e., we utilized PCA [43]
to extract the leading 100 principal components as represen-
tations. For geometry-based features, we first performed the
local thresholding to generate a binary mask. This process is
similar to [15]. Specifically, for each voxel, we calculated the
local threshold based on the mean and standard deviation of
the surrounding tissue. If the voxel of interest was below the
threshold, it was marked in the binary mask. Next, referring
to [14], we extracted seven geometric features based on the
marked regions in the binary mask, which are listed as follows:
1) the volume (number of voxels) of the region ; 2) the sorted
sizes of the bounding-box containing the region denoted by

, and ; 3) the ratios of the sizes and
; 4) compactness . In total,

we extracted 159-dimensional features for the random forest
classifier. The classifier used 500 trees and the maximum depth
of each tree is 10.
For the method of 2D CNN, we utilized the same network

architecture as [18]. Specifically, this method extracted slices
from cubic regions as input to the conventional 2D CNN and

Fig. 11. Comparison of FROC curves of different methods. The top two lines
are results produced by our 3D CNN based cascaded frameworks.

concatenated the learned features as 3D representations, fol-
lowing a SVM classifier to predict labels. In our experiments,
the SVM parameters were optimized on the validation dataset.
This method is hereinafter referred as 2D-CNN-SVM.
Table VI shows the comparison results of different methods

and the FROC curves are presented in Fig. 11. Specifically, the
method of Ours (single) denotes that a single 3D CNN model
was used in the second stage, whereas the Ours (average)
denotes that the model averaging was utilized in the second
stage. It is clearly observed that our methods outperform the
other three comparison methods by a large margin with the
highest detection sensitivity and the fewest false positive
predictions. Although the 2D-CNN-SVM method did not suf-
ficiently leverage the 3D spatial characteristics of the CMBs,
the high-level features even with limited spatial information
obtained better performance than the other two methods em-
ploying low-level features. The comparison results between
our methods and the 2D-CNN-SVM method demonstrate that
our framework benefits from the high-level representations
which can encode richer spatial information by leveraging the
3D convolutional architectures. Employing model averaging
in the second stage can further improve the overall detection
performance.
Figs. 12 and 13 present typical examples of successfully

detected CMBs. In Fig. 12 left, there are a number of hard
mimics (white rectangles) around the two true CMBs (green
rectangles). Our method is able to precisely distinguish them.
In Fig. 12 right, the two CMBs are sparsely distributed in the
volume with one of them locating at almost the boundary of the
volume. In this condition, our method can still accurately detect
both of them. In Fig. 13, two CMBs with significantly different
sizes and shapes appear in the same volume, while our method
can successfully deal with the large variations and accurately
figure out them. All these challenging examples demonstrate
the effectiveness of the proposed method.
In order to illustrate the discrimination capability of in-

termediate representations, the features extracted by the
2D-CNN-SVM and 3D CNN discrimination model were
embedded into the 2D plane using the t-SNE toolbox [44],
as shown in Fig. 14. The CMB and non-CMB samples are
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Fig. 12. Examples of CMB detection results (viewed in axial planes). Green
rectangles denote the correctly detected CMBs and white rectangles denote the
removed false positive candidates by our method.

Fig. 13. Examples of correctly detected CMBs with various sizes and shapes.
The right part shows the adjacent slices of the CMBs in three dimensions, i.e.,
axial, sagittal and coronal, from top to down.

Fig. 14. Feature embedding from 2D-CNN-SVM [18] (left) and 3D CNN
methods (right) with t-SNE toolbox. The red and blue colors correspond to the
CMBs and non-CMBs, respectively. Best viewed in color.

distinctly separated based on the features extracted via our
3D CNN. In contrast, embedding of the 2D-CNN-SVM rep-
resentations do not present such a clear partition boundary,
highlighting the discrimination capability of the 3D CNN based
features which can encode richer spatial information.

E. System Implementation
We implemented the proposed framework based on Theano1

library using dual Intel Xeon(R) processors E5–2650 2.6 GHz
and a GPU of NVIDIA GeForce GTX TITAN Z. The networks
were trained with the following hyper-parameters: learning rate

, momentum , dropout rate , batch size
. The trainable weights were randomly initialized from the

Gaussian distribution and updated with

1http://deeplearning.net/software/theano/

standard back-propagation. The models converged in about 50
minutes. The 3D FCN inference would take around 1 minute to
process a whole SWI volume with size of , and
the 3DCNN in the second stage was quite fast and could process
a subject within 1 second. Readers can access our codes and data
via our project webpage2 for more implementation details.

IV. DISCUSSION

The CMBs have been recognized as important biomarkers for
cerebrovascular diseases diagnosis and neurologic dysfunction
assessment. In current clinical routine, the manual annotation is
laborious, time-consuming and error prone. In order to relieve
the radiologists of their backbreaking labour and improve the di-
agnosis efficiency, we propose an efficient and robust two-stage
framework for automatic detection of CMBs from SWI images.
It is a full stack solution integrated with 3D CNNs for this real
challenging medical image processing problem. The first stage
efficiently screens the whole volume and retrieves a number of
potential candidates with a high sensitivity. It can not only speed
up the discrimination procedure but also assist the non-expe-
rienced radiologists by timely promoting the candidates for a
closer inspection. The second stage robustly discriminates the
true CMBs with only a few false positives generated, which can
facilitate further segmentation as well as substantial quantifica-
tion measurements of CMBs. Specifically, our method explores
the 3D CNN with shared 3D convolution kernels, which can
take full advantage of the spatial information of biomarkers in
volumetric data. Extensive experimental results corroborate the
efficacy and efficiency of our approach; its performance outper-
forms other state-of-the-art methods by a significant margin.
In medical image processing community, especially for 3D

data computing tasks, 3D CNNs hold promising potentials but
have not been well explored yet. Most previous approaches
adapted 2D CNNs for processing 3D volumetric data [18],
[45], [46], with difficulties being reported when attempting to
employ 3D CNNs. To our best knowledge, few works [47],
[48] ever utilized real 3D CNNs on medical images, and their
architecture settings, convolution kernels and prediction score
volumes were not comprehensively presented. One main con-
cern for 3D CNNs is their high computational cost. In order to
address this problem in the detection task, we propose a fast
way to narrow down the search range to a limited number of
candidates by employing the 3D FCN, which can eliminate
the redundant convolutional computations during the forward
propagation. Another concern of employing 3D CNNs is that
the implementation of 3D CNN is effortful. In this paper,
we detail the 3D CNN based solution for the challenging
CMB detection task, and we shall release our codes with the
hyper-parameter configurations to promote research on 3D
CNNs. Researchers can avoid a lot of laborious development
workload based on our codes.
Although we constructed a relatively larger dataset (i.e.,

including 320 annotated SWI volumes) than previous work,
compared with the natural image domain which usually em-
ploys millions of training samples (e.g., ImageNet challenge
provides 1.2 million images [21]), we still face the risk of

2http://www.cse.cuhk.edu.hk/~qdou/cmb-3dcnn/cmb-3dcnn.html
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over-fitting when training the 3D CNN models. Fortunately,
different from the extremely challenging natural image pro-
cessing tasks (e.g., ImageNet challenge classifies images into
1000 categories [21]), which require exceptionally large and
deep models (e.g., AlexNet contains 60 million parameters
[21]), most medical image processing tasks are not that com-
plicated and therefore the CNN models employed for these
tasks are not necessarily as complicated as those applied to
natural image processing. Taking our application as an ex-
ample, it is a binary classification task. Although the large
variations of CMBs and the existence of many hard mimics
make the detection task quite challenging, given the small size
of CMBs, it is infeasible to construct a network with too many
subsampling layers, because the lesions are too tiny to support
many layers of feature abstraction. In this regard, we build the
3D FCN screening model consisting of 6 layers (3C, 1M and
2FC) with 0.08 million trainable parameters and the 3D CNN
discrimination model also consisting of 6 layers (2C, 1M and
3FC) with 1.3 million parameters. The discrimination model
is relatively large because it requires more feature volumes
as well as FC layers to improve the representation capability
and ensure the detection accuracy. By additionally leveraging
the dropout regularization [36], the parameters of the two
models are learned using 0.4 and 0.7 million training samples,
respectively, without considerable over-fitting observed on the
validation dataset.
With the design of two-stage cascaded framework, we keep

two aims in mind: efficiency and accuracy. For an automatic
lesion detection system targeting clinical practice, we believe
that both of them are equally crucial. In the cascaded architec-
ture, the first stage focuses on excluding massive background
regions and screening potential candidates. In this stage, we de-
velop the 3D FCN to reduce computational cost, thus meet the
requirement of efficiency. The second stage focuses on the small
number of candidates and remove the difficult false positives
which are with similar appearance to CMBs. In this stage, we
employ a discrimination 3D CNN to identify the true CMBs
with a high sensitivity and low false positive rate, thus meet the
requirement of accuracy. Quantitatively, with the first stage, we
obtain around 280 false positives per subject. After the second
stage, only less than 3 false positives remain. We can see that
the second stage removes nearly 99% false positive candidates
using the 3D CNN discrimination model.
The proposed automatic CMB detection framework has great

significance in clinical practice. The CMB distribution patterns
have been proven to be associated with many cerebrovascular
diseases and cognitive dysfunction. For example, the lobar
distribution of CMBs suggests probable cerebral amyloid
angiopathy [2]. Another research shows that the topographic
distribution of CMBs differs between typical and atypical
presentations of Alzheimer's disease; the atypical presentations
are with greater burden in the frontal lobes and deep brain
regions, suggesting possible differences in underlying etiology
[49]. In addition, in patients with Alzheimer's disease, the pres-
ence of non-lobar CMBs is associated with an increased risk
for cardiovascular events and cardiovascular mortality while
patients with lobar CMBs have an increased risk for stroke and
stroke-related mortality, indicating that these patients should

Fig. 15. Example of false negative detection result. Cyan rectangles denote the
mis-detected CMB viewed in axial (left) and sagittal (right) planes. Best viewed
in color.

be treated with the utmost care [50]. According to the existing
findings of association between CMBs and risk factors of some
diseases, we can compare the distribution, location or density
of the detected CMBs with that of normal controls and make
suggestions for further clinical interventions for the patients.
Although the proposed method has achieved appealing per-

formance with a high sensitivity of 93.16%, there are several
limitations. First, the current detection scheme did not incorpo-
rate the SWI filtered phase images [51], which demonstrate the
calcium as hyperintense, thus being easily able to differentiate
the CMB from the mimic of calcification. In our future work, we
shall take into account the phase information to exclude possible
mimics of calcifications. Second, as shown in Fig. 15, the pre-
sented method may mis-detect some true CMBs with irregular
sizes. The false negative shown in Fig. 15 is with quite large
size of . However, it is observed that the
number of CMBs with a diameter over 10 mm is scarce (less
than 0.87%) in our dataset. To achieve a balance between the
accuracy and speed, we set the input size as (about

, which can fulfill the requirements of most
cases in our dataset. In such a case, in terms of the mis-detected
CMB in Fig. 15, almost no contextual information has been in-
cluded to recognize it under the current model configurations.
To address this issue without compromising detection speed,
we plan to integrate the strategy of spatial pyramid pooling [52],
which considers the multi-scale/size information during the fea-
ture representation phase, into our 3DCNNmodels in the future.

V. CONCLUSION
We present an efficient and robust method to automatically

detect CMBs from MR volumes leveraging 3D CNNs. With
the continuous accumulation of medical data, 3D CNN is
a promising solution for many detection and segmentation
tasks from 3D volumetric data, as it is capable of representing
high-level features with rich spatial information of targets in a
data driven way. However, the expensive computational cost
of 3D CNN prohibits its use in clinical practice. We propose
a two-stage framework to reduce its computational cost and
improve the detection performance. The first stage retrieves a
number of candidates with high probabilities of being CMBs by
leveraging a novel 3D FCN strategy. Compared with traditional
sliding window strategy, the 3D FCN strategy eliminates a large
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number of redundant convolutional computations, and hence
dramatically speeds up the detection procedure. In the second
stage, a well-trained model is performed on the candidates to
discriminate CMBs from hard mimics. Experimental results
demonstrate that the proposed method outperforms previous
methods by a large margin with a higher detection sensitivity
and fewer false positives. The proposed method can be easily
adapted to other detection and segmentation tasks and boost
the application of 3D CNNs on volumetric medical data.
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